
Model-based Security Engineering for Secure
Systems Development
An approach for Software Engineering

Armin Lunkeit
OpenLimit SignCubes GmbH

Berlin, Germany
armin.lunkeit@openlimit.com

Hartmut Pohl
softScheck GmbH

Sankt Augustin, Germany
hartmut.pohl@softscheck.de

Abstract— Security of software and systems is becoming more
and more important in the context of the rapid rise of distributed
communication systems and their use into the private life of each
individual. The development of new software is also accompanied
by an immense time and cost pressure. The aspects of IT-security
are therefore often not considered within the software
development process. The aim of this work is to contribute to the
improvement of the integration of security engineering into
software engineering. A model-based approach for determination
of assets, security objectives, threats, and attacks is presented.
The derivation of functional requirements for the software
development process from these artefacts is explained.

Keywords security engineering; software development; model-
based engineering

I. INTRODUCTION
Secure systems development requires a profound

knowledge of software engineering and security engineering.
Both disciplines overlap and the integration and interaction
between them is important throughout the software lifecycle.
This includes requirements engineering, architecture and
design, implementation, test, operation and maintenance.
Nevertheless, security engineering is not yet established as an
integral part of standard software development processes.

The motivation of the authors for dealing with this topic
results from the practical experience in software and system
development. Among other things, the development and
Common Criteria Evaluation of a Smart Meter Gateway
(SMGW) was accompanied from the early beginning.
Moreover, the design and development of other, comparable
devices in the eHealth sector as well as set-up machines was
supported. In all these developments it became apparent that
a) basic techniques of security engineering and their consistent
use in the software development process are not well known
by software engineers and b) frameworks like the Common
Criteria have a level of abstraction that is too high to be used
easily in the development process.

In accordance with this experience, a number of papers
identify the lack of integration of security engineering into
software engineering as one of the major challenges. The lack

of consideration of security requirements in the development
phase leads in consequence to inadequate security measures,
the late recognition of architectural and security problems and
concomitantly to economic implications, which result from the
late remedy of these problems [1], [2].

For this reason, the early identification and integration of
potential and existing security requirements by security
requirements engineering is an important part of the
requirements phase. The work presented in [2], [3], [4], [5],
[6], [7] addresses this issue and has led to different
approaches. The use of these approaches leads to different
results with regard to the resulting security requirements [8].
This is due to the different characterizations and methods used
to determine security requirements [9], [10], [11], [12], [13].
The characterization of the security problem and the context of
the identified security requirements carried out by security
engineering therefore have a significant influence on the
aforementioned aspects of software development and justify
the necessity of integrating security engineering into software
engineering.

This paper is structured as follows: In the first part, an
overview of approaches in security engineering is given. This
is not intended to be a comprehensive list of all possible
variants and is limited to the determination of security
requirements. Aspects of implementation and testing or
operation are excluded. In the second part, we introduce the
approach we use. This was developed in connection with a
PhD thesis [44]. In the third part the use of the security
engineering approach in the development of a smart meter
gateway (SMGW) is shown. Finally, an outlook on future
work is given.

II. STATE OF THE ART

A. Model driven software engineering
In the requirements and architecture phase, various model-

based approaches are used. From the object-oriented methods,
the Unified Modeling Language (UML) and the goal-oriented
approaches i* and Tropos were selected. i* is the basis for
different requirements phase approaches, e.g. Tropos and its

evolution Secure Tropos.
The Unified Modeling Language (UML) is a modelling

language maintained by the Object Management Group
(OMG). The core concept of UML is the modelling of static
structures and dynamic behaviour. Static structures are
represented using classes and discrete objects, and
relationships are expressed with inheritance and mapping.
Classes can map static structures of arbitrary states and, like
objects, have attributes. Dynamic behavioural descriptions are
mapped with states and their transitions, sequences, and
actions.

With use cases and their diagrams, UML offers a method
for requirements analysis. Use cases can be linked through
extensions and inclusion. With this approach, functional
requirements can be modelled, while this is only indirectly
possible for non-functional requirements. Various extensions
of the UML have been proposed to integrate the mapping of
non-functional requirements into the UML [14], [15], [16],
[17]. In the domain-specific context, the possibility of
profiling is used. The two approaches UMLsec and
SecureUML extend the UML with aspects of IT security.

i* is a goal-oriented framework for requirements
determination and analysis and was described in 1995 in the
dissertation by Eric Yu ([18]). Originally i* was designed to
model business processes related to software development. A
central idea in the i* framework is the interdependence of
actors to achieve a strategic goal, to provide a resource, or to
perform a task. In the model of the strategic principles, the
organizational context and the internal relationships of the
components are depicted. A central concept in i *, which is
also used by the further development Tropos and Secure
Tropos, is the distinction in the definition of the goals. Hard-
Goals are strategic goals whose achievement is essential. Soft-
Goals model goals whose fulfilment conditions are not clearly
defined. This concept is transferable to functional and non-
functional requirements. The further development of the
approach takes place in the Tropos framework [19].

Tropos [20] is a modelling approach that takes advantage of
the agent-oriented paradigm (AOP). While i* was originally
developed to better model processes, Tropos is a framework
for gathering and modelling requirements right up to the
system architecture. The core concept of Tropos is the
development of a model of the target system and its
environment, which is gradually refined in an iterative
process. The methodology supports various software
development activities [20]. Unlike UML, Tropos does not
provide a mapping to the implementation. The usability of
Tropos in software engineering is therefore primarily located
in the requirements phase and the early architecture and design
phase [20], [21], [22], [23], [24].

B. Security engineering - analysis and design techniques
The CORAS method is a risk-oriented approach that can be

used to investigate technical and non-technical issues. Eight
steps are defined from the preparation for the analysis to the

identification to the treatment of existing risks. Acceptable
risks are not pursued in the analysis, while unacceptable risks
must be dealt with. A central part of the method is the
graphical analysis. This reduces the complexity of the
examination and documents the causes of a potential risk in a
comprehensible manner. There are various types of charts
defined (asset, threat, risk and treatment charts) that help in
risk analysis. The CORAS language for describing,
documenting, and analysing threats and risks was originally
defined as an UML profile and has evolved into a domain-
specific language (DSL). The original UML profile has
become part of OMG's profile "UML Profile for Modeling
Quality of Service and Fault Tolerance Characteristics and
Mechanisms Specification" [25].

The fault tree analysis (FTA) is used to determine the
reliability of a system and enables the estimation of the
probability of failure [26]. It is used in safety engineering and
is important in the field of avionics, military technology and
probabilistic safety analysis in the operation of nuclear power
plants [27]. In security engineering, fault tree analysis is used
in risk-based approaches such as CORAS [28].

Fault trees use AND and OR expressions to link individual
events and merge them at the root into an undesired top event.
It uses a negative logic; a value of 1 indicates that the error
event has occurred. In order to determine the probability of
failure and thus the probability of occurrence of the undesired
result the probabilities of occurrence of each individual
negative precondition and the AND and OR expressions are
evaluated. The procedure of the fault tree analysis is related to
the attack trees (attack trees) [29]. The method is used in
procedures such as CORAS and Threat Modelling and in
combination with other approaches of security engineering.

Threat Modelling is a technique for detecting threats
directed against a system. The analysis takes place in tree
structures and shows the preconditions leading to a successful
attack. These preconditions, like a fault tree, are linked using
AND and OR statements. The calculation of the probability of
occurrence differs from the fault tree analysis, since the
associated probabilities are in the context of the assumed
attacker and his capabilities.

The prerequisite for the application of threat modelling is
the knowledge of the values to be protected, the attack surface
and the characterization of the attacker. The analysis is done
using dataflow diagrams, which simulate threats and attacks.
Elements of threat modelling are integrated in various
methods and procedures, for example as part of the Security
Development Lifecycle (SDL) [30], [31], in the CORAS
methodology or in the Common Criteria. The results of the
threat modelling can be used as a basis for the determination
of security requirements (see [32]). However, this is only
possible if the security objectives for the system and its assets
have been precisely determined beforehand. If this is not done,
the image of the threat situation is discarded and can generate
inconsistent security requirements. The identification of attack
trees and the use of data flow diagrams to identify potential

attack paths as well as classification and risk assessment
require comprehensive knowledge of the planned or actual
implementation of the system.

Secure Tropos is an extension of the Tropos framework and
can be used in the requirements and architecture phase [33] as
well as in the test phase [34], [35]. A graphical notation is
used to model design goals of a system.

UMLsec is a UML profile for modelling aspects of IT
security [36], [15]. The profile supports the phase of design
and architecture, from the capture of use cases to sequence and
state diagrams. In [15], chapter 6, both the connection between
model and code as well as the extraction of test cases from the
existing model are discussed, but not deepened further; the
focus remains on design and architecture. New stereotypes,
boundaries (tags) and constraints are introduced to model and
validate security requirements.

SecureUML is a specialized extension of the UML meta
model with additional stereotypes for role-based access
permissions (RBAC) [37], [38], [39], [40], [41]. Modelling of
attacks and secure protocols is not supported.

The Common Criteria are a framework for modelling and
evaluating the IT security of products. Functional security
requirements offer a technology-neutral abstraction and leave
the concrete implementation of the security requirements to
the developer of the product. The evaluation framework is
asset-centric. Based on the values to be protected,
countermeasures are defined to minimize threats and prevent
successful attacks. It is crucial to determine whether the
measures implemented are adequate and treat the security
problem correctly. The modelling of the security requirements
is based on functional security requirements. These are used in
the protection profile and in the security specification for
modelling the security objectives. The Common Criteria offer
in [42] a catalogue of existing components for just that
purpose. The Common Criteria define a methodology for
modelling security requirements, but do not make any
necessary contribution to the design. The main focus is the
evaluation of IT security. The Common Criteria provide a
snapshot of the IT security of a product and are methodically
poorly prepared for changes in the product or operating
environment.

III. MODEL BASED SECURITY ENGINEERING
This section introduces our approach to security

engineering. It provides the actors in software engineering
with a means to model the security problem to be solved. This
addresses one of the core problems in software engineering -
the evaluation of the suitability of selected security
mechanisms. We define the key terms and then introduce a
meta-model that focuses on the relationships between assets,
security objectives, threats, attacks, and derived functional
security requirements. We call this Security Problem
Definition. On this basis, a security problem analysis approach
is presented, the application of which will enable the

effectiveness of the chosen security mechanisms to be
assessed in the context of existing threats and attacks.

Fig. 1. Methods in context of software lifecycle

A. Perspectives
The model of the security problem identifies and

characterizes assets, applicable security objectives, threats,
attacks and attackers, and their respective potentials. The
security problem introduces two perspectives.
1) The socio-technical perspective models the assets to be

protected, applicable security objectives and threats from
the point of view of external actors interacting with the
system. The system is considered a black box.

2) The technical perspective models the assets to be
protected, applicable security objectives and threats from
the system viewpoint. Internal assets are identified, their
security objectives and applicable threats are
characterized and linked to the objectives of external
actors.

Both perspectives are stakeholder perspectives. The socio-
technical perspective models the view of entities, which have
an interest in the implementation of the requirements. It
examines the interaction of external actors with the technical
system and describes values, security objectives and threats.
External actors identify other assets and security objectives as
with an exclusively technical view of the system. The
technical perspective deals with the technical aspects of the
system and provides the mapping to the system design and
implementation. In this case, the project participants or the
manufacturer are to be considered as stakeholders. The use of
the model of the technical perspective ensures the fulfilment

Requirements Architecture Implementation Test Operation

i*

Tropos

UML

MBT

Monitoring

Secure Tropos

UMLsec

Secure UML

Threat Modeling

FTA

Model Checking

MBT

Common Criteria

SIEM

ISI

Software Engineering

Security Engineering

CORAS

of the security goals identified in the socio-technical
perspective.

Using both perspectives provides the advantage of a
comprehensive analysis of all aspects of the security problem.
The technical perspective takes up the goals of the external
actors and the roles they have implemented. It focuses on
those values and security objectives that are prerequisites for
achieving the objectives of external actors. These values and
security objectives and the corresponding threats are irrelevant
to the black-box view of the socio-technical perspective of the
external actor.

Fig. 2. Relation between Actor, Role, Asset and Security Objective

An actor can take on several roles, as well as a role of
several actors can be perceived. The role has an interest in a
value to be protected (asset). The role also defines the security
objective for the value to be protected. The security objective
protects the asset. These relationships apply equally to both
perspectives. Security objectives are defined by, but not limited
to, the terms authenticity, integrity, confidentiality, and
availability. The schema allows the definition of further
security objectives, which are then described in textual form.

B. Scenarios
A cross-perspectival concept is the scenario. Scenarios are

used to outline the context of the assets. Not every scenario
involves all the assets to be protected. Likewise, the security
goals may vary for a value to be protected between scenarios.

Fig. 3. Scenario concept

C. Threats and attacks
Key elements for modelling the security problem are threats

and attacks. Threats subsume possible attacks directed against
an asset. Threats are described more abstractly and do not deal
with the technical implementation. The initial description of
the security problem uses this level of abstraction. In addition,
the concept of the security mechanism is introduced. Security
mechanisms are used individually or in combination to protect

an asset against threats and their associated attacks. This
distinguishes our model approach from such approaches as the
Common Criteria. It works with the abstract concept of threat,
while this approach takes into account specific attacks. This
distinction is important because threats can be implemented in
a variety of ways, and addressing generic threats does not
always reveal all the resulting security requirements.

D. Meta model of the security problem definition

Fig. 4. Meta model of the security problem definition

The security problem model places requirements, security
objectives, assets, and security mechanisms in a context of
threats, attacks, and vulnerabilities. In addition to determining
the relationships between these elements, the definition of
potentials is a key element of the approach. In order to enforce
the security objectives of an asset, the level of protection
obtained from the security mechanisms must be equal to or
greater than the potential of the attack. To illustrate these
relationships, the model elements attack potential, resistance
and protection level are introduced. With this foundation, the
security problem models the relationship to the requirements
that are raised to solve it.

The central element of the model is the asset. Assets may be
resources or data. Assets have associated security objectives.
Security objectives lead to requirements that may be
functional or non-functional. This approach establishes the
link between assets, security objectives and requirements.
Security objectives are always described succinctly in terms of
integrity, confidentiality, authenticity. This distinguishes the
approach from the Common Criteria approach, which
formulates broader security goals. This more comprehensive
representation is roughly comparable to security mechanisms
in our approach.

New elements are attack potential, resistance and
protection level. Attack potential qualitatively characterizes
the abilities of an attacker. The attacker is in connection with

Actor

Role Asset

Security Objective
1..*

1..*

1..*

1..*

1
1..*1

1..*

protectsdefines

is interested in

has

Asset

Security Objective

Scenario

1..*

protects1..*

1
access 1..*

Threat Agent Attack Potential

Threat

Asset

Security Mechanism

Security Objective

Data Resource

Requirement

Functional RequirementNon-functional Requirement

Vulnerability

Attack

Resistance

Protection Level

ConstraintSystem Policy

1
1

1

1..*

has

1..*

0..*
1..*

has
1

1

1

increases

1

1..*

treats1..*
1..*

launch 1..*

1..*

1..*

1..*

im
pa

ct
s

1.
.*

0.
.*

1..*

1..*

1..*
has

us
es

1.
.*

attacks
1

1..*

leads to
1..* 0..*

mitigates

1

1

contributes

one or more threats that are implemented by one or more
attacks. The implementation of an attack corresponds to the
capabilities of the attacker characterized in the attack
potential. This characterization is a significant change to
abstracted threats, as the abilities granted to the attacker are
included in the analysis. The resistance characterizes the
effectiveness of a security mechanism. Both are in a 1: 1 ratio,
with the security mechanism countering a threat. Resistance
contributes to the level of protection which counteracts an
attack in the context of the assigned attack potential and
protects a value. The security mechanism contributes to the
achievement of a security objective, placing security
mechanisms and security objectives in context.

E. Characterization of threats
Threats subsume a number of attacks targeted against the

same asset and its security objectives. Security objectives are
described in the terminology of confidentiality, integrity,
authenticity and should be enforced for values to be protected.
Threats are directed against the protected values. The goal is
the violation of security objectives.

A threat is implemented by one or more attacks. This
relationship is fundamental to the characterization of threats.
The term threat describes an abstraction, while the attack is the
implementation of the threat characterized by technical and /
or social interaction. The ability to implement one or more
attacks to implement an attack depends on several factors.
First, there must be an exploitable vulnerability at all. The
exploitation of this attack requires several abilities of the
attacker, which build the foundation of his attack potential.

F. Characterization of the attacker
An attacker is characterized by the attributes preparation

time, analysis time, knowledge, expertise, specialized
equipment, and social capabilities. Similar factors are used in
[43], Section B.4.2.2; the social abilities are not taken into
account there. However, this factor is needed to characterize
attacks from the context of social engineering. Attack potential
of the attacker is the result of the characterization.

TABLE I. ATTACKER CHARACTERISATION

Factor Description
Preparation time The entire time the attacker has for attack

preparation
Analysis time The time available to an attacker to access the

system and prepare for an attack
Specialized
equipment

The availability of specialized equipment to
identify a vulnerability and develop an attack
against a security mechanism

Knowledge Describes what information about the design of
the attacked system the attacker has.

Expertise Characterizes the attacker's expertise to identify a
vulnerability and develop an exploit

Social capabilities Describes the ability of an attacker to manipulate
people and their social environment

G. Characterization of resistance and protection level
Security mechanisms defend assets against attacks. It is

estimated whether the chosen mechanism sufficiently protects
the value to be protected against the respective attacks. This is
modelled using resilience. As a result of the characterization
of the resistance, a value between 0 and 10 is determined. A
characterization that is comparable to the attacker is
determined and determines what effort must be made for the
attack to be successful.

TABLE II. ASSIGNMENT OF RESISTANCE

Value Meaning Context for
characterization

0 The security mechanism is
ineffective.

The attacker has
stronger capabilities in
all respects

1 The security mechanism is weak
and has only a small contribution to
ward off the investigated attack.

The attacker is inferior
to the security
mechanism in at least
one property.

5 The security mechanism does not
provide complete protection against
the attack being investigated.

The attacker is inferior
to the security
mechanism in at least
three properties.

10 The security mechanism mitigates
the attack completely.

The attacker is inferior
in all its properties to the
security mechanism.

The mitigation of an attack can be done by combining

several security mechanisms. In order to take this into account,
the element protection level summarizes the individual
contributions of the individual security mechanisms. In the
model approach used, the individual contributions are added
up. This approach seems naive in the first step. In fact, this
approach quickly shows whether the combination of different
security mechanisms is suitable for warding off a specific
attack. It is indisputable that the evaluation of the interaction
of several security mechanisms requires the expertise of the
architect. However, it can be assumed that expert systems and
AI approaches in particular may be suitable for supporting this
process.

H. Graphical Representation
To simplify the analysis task and the exchange of information,
a graphical representation can be used. The elements Scenario,
Asset, Security Objective, Security Mechanism and Threat are
defined in order to represent the relationships between these
elements in a simple graphical representation (see Fig. 5). This
approach addresses entirely different contexts, such as threat
modelling or CORAS.

A. Evaluation of the security model
Based on the previous steps, analysis and evaluation of the

security problem are performed. It is determined whether the
selected security mechanisms adequately protect the identified
assets against attacks. If the analysis shows that all threats and
attacks are treated in an adequate manner, the derived
requirements flow into the software engineering. If the

security mechanisms are inadequate, it must be decided
whether the threats and attacks are considered acceptable risks
or whether changes to security mechanisms are required.

Fig. 5. Elements of the graphical representation

These decisions are made on the basis of a quantitative
assessment. The quantitative assessment of the respective
elements - especially the security mechanisms and the
effectiveness of their combination - is not trivial. The basics of
evaluating security mechanisms are publications such as
technical standards and guidelines. These include, for
example, the technical guidelines published by the Federal
Office for Information Security in Germany, NIST standards,
which provide recommendations and assessments of the use of
cryptographic mechanisms as a sub-aspect. Such
recommendations are not available for all conceivable security
mechanisms, so a rating must be created through research. The
model considers the quantitative assessment using the
elements Resistance and Protection Level. The first element
individually describes for a security mechanism its capabilities
for mitigation of an attack. The level of protection subsumes
the resilience of multiple security mechanisms, as the
combination of several weaker security mechanisms may be
able to mitigate a threat.

In addition to the security mechanisms, the individual
attacks are to be evaluated. The characterization of the
attacker shows the maximum potential of an attack. All attacks
within this range are feasible for such an attacker. The model
approach allows the definition of multiple attackers with
different attack potentials. The analysis is based on the
unacceptable attacker with the highest potential, if the
characterization of the attacker shows no differences in the
possibilities granted. A distinction is the accessibility. This
means whether the attacker has physical or only remote
access. Attacks that are available to an attacker with physical
access cannot be performed by a remote attacker. With the
same characterization, the analysis uses the attacker with
physical access because its arsenal of exploitable attacks is
greater.

B. Integration into software engineering
In order to derive functional security requirements for

software engineering, the information obtained in the socio-
technical and technical perspective is used. This requirement
derivation transforms the security mechanisms defined by
security engineering into a description that can be used for

software engineering, which leads to an architecture and
implementation. Since the security mechanisms counter
threats that in turn subsume concrete attacks, measures against
known attacks flow into the formulation of the security
requirements. This prevents vulnerabilities that can be used as
a basis for successful attacks.

Fig. 6. Derivation of requirements

A functional security requirement specifies technical
measures to achieve a security objective. In this context, the
resistance of the individual mechanism chosen and the level of
protection achieved against the threat-related attacks are
evaluated. The chosen mechanisms are sufficient and the attack
is mitigated if the combination of mechanisms used generates a
level of protection that is above the attack potential attained.

Fig. 7. Security Engineering Process

IV. CASE STUDY – SMART METER GATEWAY
In the following, the embedding of the approach in the

development of a smart meter gateway (SMGW) is shown
exemplary. A protection profile [45] with security requirements

Attack

Security Mechanism

Vulnerability

Threat

Security Objective

Asset

Requirement

Functional Requirement

Non-functional Requirement

0..*

1..*

impacts

1

1..*

uses

1

1..*

contributes1..*
1..*

1..*

has1..*

1

attacks
1..*

leads to

1..*

0..*

Scenarios Assets

Attacker

Security mechanism
selection

Elaboration of
Protection Level

Attack Characterization

Rating

Threats

Vulnerabilities

Mitigated?

n y

Functional Security
Requirement

Security Objectives

has already been defined and the system undergoes a Common
Criteria EAL4+ evaluation.

A. Purpose of Smart Meter Gateways
Smart Meter Gateways are decentralized communication

gateways for recording and tariffing measurement data for
electrical energy. Several networks are defined. The Home
Area Network (HAN) provides a graphical interface for the
consumer and a service interface for the service technician. The
Local Metrological Network (LMN) contains the assigned
counters. The gateway administrator, the billing service, and a
time service communicate with the system over the wide area
network (WAN). The SMGW provides a communication
channel (CLS channel, Controllable Local System channel)
between entities in the WAN and HAN, which is logical
distinct from other communication. The security requirements
for such systems are abstractly defined in a Common Criteria
protection profile [45]. At the same time, the functional
requirements are part of the technical guideline TR-03109 [46].

B. Need for an engineering-oriented perspective
The SMGW protection profile includes an analysis of the

security problem and identifies values, assumptions, threats,
security objectives, and organizational security policies to be
protected. The selected level of abstraction formulates security
requirements at a level that is not suitable for direct system
development. All requirements must be interpreted in the
context of technical guideline TR-03109. For software
development, the following challenges exist when using the
protection profile.

1. The level of abstraction of the security objectives
is very high despite the detailing provided in
Section 6 of [45] based on functional security
requirements. The functional requirements remain
too unspecific for the process of software
development.

2. Section 3.2 identifies the need for protection for
each asset. The specified protection requirement is
not justified and only becomes apparent in the
context of the technical guideline.

3. The representation of the threats must be in a
manner appropriate to the system being developed.
The representation in the protection profile is too
generic. To understand the identified threats, a
more detailed description and, in particular,
differentiation against scenarios that are not
covered by the threat, is required.

4. The attacker model defines high attack potential
for the WAN attacker, whereas for the local
attacker this only applies to the preparation phase.
The execution of the attack is restricted to a
layman. This restriction excludes attacker

motivations that are outside of financial intentions
(manipulated energy consumption).

5. The protection profile does not consider an
important asset – the authentication data of the
SMGW to the HSM. Instead, a variant attacker
model is given in Section 6.3 in [46], which is in
obvious contradiction to the protection profile.

The security requirements of the protection profile have
been worked up in a way that creates an understanding of their
motivation within software engineering. In particular, the
analysis of the threats and their potential implementation
through attacks leads to the traceability of security mechanisms
and resulting security requirements.

C. Scenarios and Assets
Based on [45] and [46], the assets assigned to the respective
perspectives were determined. The number and
characterization of the assets are different from those in the
protection profile. The analysis resulted in a total of 20 assets,
the protection profile in total 15. Examples of differences in
the determined assets are the authentication data of the
consumer and the firmware itself. The authentication data of
the consumer can be used to obtain information about assigned
consumption data via the display interface. The IP protection
of the firmware justifies the treatment as an asset. Such
aspects are not taken into account in the protection profile.
Examples of the assets are the configuration data of the
SMGW, the authentication data of the consumer, the active
firmware and the consumption data. There are threats such as
unauthorized data access and unauthorized data changes,
identity misuse and erroneous communication (e.g., caused by
spoofing).

Fig. 8. Graphical Analysis for Firmware during boot

D. Threats, Attacker and Attacks
For the modelling of potential attackers, the attacker types

'remote attacker' (ARemote) and 'attacker with physical access'
(APhys) were defined.

TABLE III. EXEMPLARY CHARACTERIZATION OF APHYS

Factor Description

Preparation Time The cost-benefit analysis of the
Federal Ministry of Economics and
Energy [47] assumes in chapter 6,
table 32, an amortisation period of a
device of 13 years. It can therefore be
assumed that a device will be used for
a period of 13 years from the date of
commissioning.

Analysis Time Identical to preparation time

Specialized
Equipment

The necessary equipment for
analysing this communication
consists of commercially available
computers, the required software is
mostly available as free software. The
effort to procure the analysis
equipment is classified as low to
medium.

Knowledge Most information is public. There is
no effort to explore used protocols.

Expertise Technical expert in multiple
disciplines

Social capabilities The attacker has sufficient
manipulative ability to gain access to
the protected HAN and LMN
segments.

This is based on the assumption that attackers exist that
have only the possibility for attacks via the communication
interfaces. In contrast to the protection profile, a second
attacker type with the possibility of physical access was
defined. The characterisation of both attackers is comparable
except for the possibility of physical access. In addition, the
motivational profile is different, especially for the local
attacker, from that chosen in the protection profile. In addition
to the economic motivation (greed), the selected
characterization takes into account factors such as competition
/ reverse engineering, curiosity, damage to the operator of the
metering infrastructure and the use of the SMGWs for attacks
on other infrastructure components. Overall, the potential of
the local attacker is increasing in particular.

Examples of attacks are those directed against web
applications. The information interface for the consumer is
HTML-based. Any attacks that are relevant to web applications
are also relevant to this interface. Examples include XSS
attacks, injection of interpreted data (such as SQL injection),

attacks from TLS connections, and exploitation of
misconfigurations.

For XSS attacks, the SMGW serves as a tool to attack the
consumer. As a result, further attacks can be prepared. With
SQL injection (or data injection) the attacker can try to
manipulate the configuration and the installed software. All
variations of this scenario have in common that input data
could be interpreted or executed by the SMGW without
sufficient syntactic and semantic testing. Attacks on the tunnel
used for data transmission are carried out by an attacker to
disrupt or take over a session between the consumer display
and the SMGW. Taking advantage of mismatches sums up
those scenarios where a service offers an exploitable
vulnerability due to improper or poor configuration. Examples
include directory traversal attacks (breakout from the Web
application root directory) or the possibility of unauthorized
access to protected resources.

E. Security Mechanisms and Security Requirements

TABLE IV. EXEMPLARY SECURITY REQUIREMENTS

Security Mechanism Security Requirement
Enforcement of security
domains

Enforcement of security domains
using SELinux. Security domains
are defined along the logical
communication (HAN. WAN,
LMN, CLS)

Runtime protection Use of ASLR (address space
layout randomization) and SSP
(stack smash protection) to
mitigate impact minimization in
case of successful local attack.

Minimal Deployment There are only those applications
and libraries deployed that are
actually used.

Defensive Configuration Exclusive use of secure
configurations of the software
components used, no
experimental features.

The listed threats and attacks shown by way of example
lead to the listed exemplary security mechanisms and security
requirements. Within the case study, the effectiveness of the
chosen security mechanisms was compared with the identified
attacks and evaluated. Quantitative evaluation as an aid
simplified the selection of security mechanisms and the
following definition of security requirements.

V. CONCLUSION
This article shows an approach to model-based security

engineering. Such an approach is required for the successful
integration of security engineering into software engineering.
Compared to existing methods, the presented approach

increasingly uses already described attacks to assess the
effectiveness of selected security mechanisms. The abstracted
level of the threat is left with this step. The method offers the
possibility of a quantitative assessment and thus facilitates the
design of a secure system. The process shown was successfully
tested during the development of a secure communication
solution for smart metering systems1. In further work, the
previously missing tool support will be implemented. The goal
is to replace the previous manual analysis process with an
automated procedure. Another conceivable approach is the
creation of expert systems that use methods of machine-based
learning. This approach could be the subject of further research
in the context of a dissertation or an industrial project.

REFERENCES
[1] Slaughter, Sandra A.; Harter, Donald E.; Krishnan, Mayuram S.:

Evaluating the cost of software quality. In: Communications of the ACM
41 (1998), Nr. 8, S. 67–73

[2] Devanbu, Premkumar T.; Stubblebine, Stuart: Software Engineering for
Security: A Roadmap. In: Proceedings of the Conference on The Future
of Software Engineering. New York, NY, USA: ACM, 2000 (ICSE ’00).
– ISBN 1–58113–253–0, 227–239

[3] Haley, Charles B.; Moffett, Jonathan D.; Laney, Robin; Nuseibeh,
Bashar: A framework for security requirements engineering. In:
Proceedings of the 2006 international workshop on Software
engineering for secure systems ACM, 2006, S. 35–42

[4] Haley, Charles B.; Laney, Robin; Moffett, Jonathan D.; Nuseibeh,
Bashar: Security Requirements Engineering: A Framework for
Representation and Analysis. In: IEEE Transactions on Software
Engineering, 34(1) pp. 133–153 (2008)

[5] Pasquale, Liliana; Salehie, Mazeiar; Ali, Raian; Omoronvia, Inah;
Nuseibeh, Bashar: On the role of primary and secondary assets in
adaptive security: An application in smart grids. In: Software
Engineering for Adaptive and Self-Managing Systems (SEAMS) 2012
ICSE Workshop, 4-5 June 2012, Switzerland, 2012

[6] Mellado, Daniel; Fernandez-Medina, Eduardo; Piattini, Mario: A
common criteria based security requirements engineering process for the
development of secure information systems. In: Computer standards &
interfaces 29 (2007), No. 2, pp. 244–253

[7] Lamsweerde, Axel V.; Brohez, Simon; Landtsheer, Renaud D.; Jans-
sens, David; Informatique, D ́epartement D.: From System Goals to
Intruder Anti-Goals: Attack Generation and Resolution for Security
Requirements Engineering. In: In Proc. of RHAS’03, 2003, S. 49–56

[8] Elahi, Golnaz: Security requirements engineering: state of the art and
practice and challenges. Online. http://www.cs.utoronto.ca/~gelahi/
DepthPaper.pdf. Version:2009

[9] Mayer, Nicolas; Rifaut, Andre; Dubois, Eric u. a.: Towards a risk-based
security requirements engineering framework

[10] Chen, Yue: Software Security Economics and Threat Modeling based on
Attack Path Analysis; A steakholder value driven approach, Faculty of
the graduate school, University of Southern California, Diss., 2007

[11] Sheyner, Oleg M.: Scenario Graphs and Attack Graphs, School of
Computer Science, Computer Science Department, Carnege Mellon
University, Pittsburgh, PA, Diss., 2004

[12] Common Criteria Management Board (CCMB) (Hrsg.): Common
Criteria for Information Technology Security Evaluation, Part 1:
Introduction and general model, CCMB-2012-09-001, Version 3.1
Revision 4. 2012

[13] M. Soldal, K. S. B. Solhaug S. B. Solhaug: Model Driven Risk Analysis
- The CORAS Approach. Springer Verlag Berlin Heidelberg, 2011

1 OpenLimit SignCubes AG and Power Plus Communications AG

developed a TR-03109 compliant Smart Meter Gateway (SMGW). This
Gateway is currently under Common Criteria certification.

[14] Cysneiros, Luiz M.; Prado Leite, Julio Cesar S.: Using UML to reflect
non-functional requirements. In: Proceedings of the 2001 conference of
the Centre for Advanced Studies on Collaborative research IBM Press,
2001

[15] Jürjens, Jan: Secure Systems Development with UML. Springer Verlag
Berlin Heidelberg, 2005. – ISBN 3–540–00701–6

[16] Zhang, Hongyu; Zhang, Xiuzhen; Gu, Ming: Predicting defective
software components from code complexity measures. In: Dependable
Computing, 2007. PRDC 2007. 13th Pacific Rim International
Symposium on IEEE, 2007, pp. 93–96

[17] Chung, Lawrence; Prado Leite, Julio Cesar S.: On non-functional re-
quirements in software engineering. In: Conceptual modeling:
Foundations and applications. Springer, 2009, pp. 363–379

[18] Yu, Eric Siu-Kwong: Modelling Strategic Relationships for Process
Reeingineering, University of Toronto, Diss., 1995

[19] Castro, Jaelson; Kolp, Manuel; Mylopoulos, John: Towards
requirements-driven information systems engineering: the Tropos pro-
ject. In: Information systems 27 (2002), No. 6, pp. 365–389

[20] Bresciani, Paolo; Perini, Anna; Giorgini, Paolo; Giunchiglia, Fausto;
Mylopoulos, John: Tropos: An agent-oriented software development
methodology. In: Autonomous Agents and Multi-Agent Systems 8
(2004), No. 3, pp. 203–236

[21] Garzetti, Maddalena; Giorgini, Paolo; Mylopoulos, John; Sannicolo,
Fabrizio: Applying Tropos Methodology to a real case study:
Complexity and Criticality Analysis. (2002)

[22] Cares, Carlos; Franch, Xavier; Mayol, Enric: Extending tropos for a
prolog implementation: A case study using the food collecting agent
problem. In: International Workshop on Computational Logic in Multi-
Agent Systems Springer, 2005, pp. 396–405

[23] Morandini, Mirko; Nguyen, Duy C.; Perini, Anna; Siena, Alberto; Susi,
Angelo: Tool-supported development with tropos: The conference
management system case study. In: International Workshop on Agent-
Oriented Software Engineering Springer, 2007, pp. 182–196 

[24] Hadar, Irit; Kuflik, Tsvi; Perini, Anna; Reinhartz-Berger, Iris; Ricca,
Filippo; Susi, Angelo: An empirical study of requirements model
understanding: Use Case vs. Tropos models. In: Proceedings of the 2010
ACM Symposium on Applied Computing ACM, 2010, pp. 2324–2329

[25] Object Management Group: UML Profile for Modeling Quality of
Service and Fault Tolerance Characteristics and Mechanisms
Specification, Version 1.1. 2008

[26] Ericson, Clifton A.; Ll, Clifton: Fault tree analysis. In: System Safety
Conference, Orlando, Florida, 1999, pp. 1–9

[27] Roberts, N.H.; Vesely, W.E.; Haasl, D.F.; Gold- berg, F.F.: Fault Tree
Handbook (NUREG-0492). In: US Nuclear Regulatory Commission
(1981)

[28] Fredriksen, Rune; Kristiansen, Monica; Gran, Bjørn A.; Stølen, Ketil;
Opperud, Tom A.; Dimitrakos, Theo: The CORAS framework for a
model-based risk management process. In: International Conference on
Computer Safety, Reliability, and Security Springer, 2002, pp. 94–105

[29] Stamatelatos, Michael; Vesely, William; Dugan, Joanne; Fragola,
Joseph; Minarick, Joseph; Railsback, Jan: Fault tree handbook with
aerospace applications. 2002

[30] Shostack, Adam: Experiences threat modeling at microsoft. In:
Modeling Security Workshop. Dept. of Computing, Lancaster
University, UK, 2008

[31] S. Lipner: “The Trustworthy Computing Security Development
Lifecycle". Proceedings of the 20th Annual Computer Security
Applications Conference (ACSAC’04) Tucson 2004

[32] Myagmar, Suvda; Lee, Adam J.; Yurcik, William: Threat modeling as a
basis for security requirements. In: Symposium on requirements
engineering for information security (SREIS) Bd. 2005 Citeseer, 2005,
pp. 1–8

[33] Massacci, Fabio; Mylopoulos, John; Zannone, Nicola: Computer- aided
support for secure tropos. In: Automated Software Engineering 14
(2007), No. 3, pp. 341–364

[34] Mouratidis, Haralambos; Giorgini, Paolo: Secure tropos: a security-
oriented extension of the tropos methodology. In: International Journal

of Software Engineering and Knowledge Engineering 17 (2007), No. 02,
pp. 285–309

[35] Giorgini, Paolo; Mouratidis, Haralambos; Zannone, Nicola: Modelling
security and trust with secure tropos. In: Integrating Security and
Software Engineering: Advances and Future Vision (2006), pp. 160–189

[36] Jürjens, Jan: UMLsec: Extending UML for secure systems development.
In: ≪UML≫ 2002—The Unified Modeling Language (2002), pp. 1–9

[37] Lodderstedt, Torsten; Basin, David; Doser, Jürgen: SecureUML: A
UML-based modeling language for model-driven security. In:
International Conference on the Unified Modeling Language Springer,
2002, pp. 426–441

[38] Brucker, Achim D.; Doser, Jürgen; Wolff, Burkhart: A model
transformation semantics and analysis methodology for SecureUML. In:
International Conference on Model Driven Engineering Languages and
Systems Springer, 2006, pp. 306–320

[39] Cenys, A; Normantas, A; Radvilavicius, L: Designing role-based access
control policies with UML. In: Journal of Engineering Science and
Technology Review 2 (2009), pp. 48–50

[40] Matulevicius, Raimundas; Dumas, Marlon: A Comparison of Secu-
reUML and UMLsec for Rolebased Access Control. In: Proceedings of
the 9th Conference on Databases and Information Systems, 2010, pp.
171–185

[41] Matulevicius, Raimundas; Dumas, Marlon: Towards model transfor-
mation between SecureUML and UMLsec for role-based access control.
In: Databases and Information Systems VI, IOS Press (2011)

[42] Common Criteria Management Board (CCMB) (Hrsg.): Common
Criteria for Information Technology Security Evaluation, Part 2:
Security functional components, CCMB-2012-09-002, Version 3.1
Revision 4. 2012

[43] Common Methodology for Information Technology Security Evaluation,
Evaluation methodology, CCMB-2012-09-004, Version 3.1 Revision 4.
2012

[44] Armin Lunkeit, Modellbasiertes Security-Engineering in der
Softwareentwicklung, PhD Thesis, TU Berlin, 2018

[45] Bundesamt für Sicherheit in der Informationstechnik (BSI) „Protection
Profile for the Gateway of a Smart Metering System (Smart Meter
Gateway PP) Schutzprofil für die Kommunikationseinheit eines
intelligenten Messsystems für Stoff- und Energiemengen Version 1.3“,
2014.

[46] Bundesamt für Sicherheit in der Informationstechnik (BSI) „Technische
Richtlinie BSI TR-03109-1 Anforderungen an die Interoperabilität der
Kommunikationseinheit eines intelligenten Messsystems“, Version 1.0.
2013.

[47] Ernst & Young: Kosten-Nutzen-Analyse für einen flächendeckenden
Einsatz intelligenter Zähler, 30.07.2013. 2013

View publication statsView publication stats

https://www.researchgate.net/publication/324498215

